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OBJECTIVES

A. We shall study the operation of relativistic, electromagnetic, cylindrical crossed—field devices, partic-

ularly the A6 magnetron in the initiation stage. Our first studies may not include periodic effects,
but later studies will include periodic effects. We shall (i)obtain results for the prediction of growth
rates and operating characteristics; and (ii) seek to detail and understand how each of the relativis-
tic, and electromagnetic, and cylindrical effects affect the resulting density profiles and other operating
characteristics.

. We shall return to the nonrelativistic, electrostatic, planar #1266, and study its operation in the
saturation stage. We shall (i)obtain results for the operating characteristics; and (ii)compare with
known experimental characteristics.

. We shall study the operation of relativistic, electromagnetic, cylindrical crossed-field devices, particu-
larly the A6 magnetron in the saturation stage. We shall (i}obtain results for the operating character-
istics; and (ii) seek to detail and understand how the relativistic, and electromagnetic, and cylindrical
effects affect the resulting density profiles and other operating characteristics in this stage.

. We shall continue our studies of plasma interactions, linear and nonlinear, in the ionosphere. The
specific objectives are: (i)description of the global linear solution for an rf electromagnetic wave injected
into the ionosphere, including in the region where the cutoffs of the P-mode and the Z-mode cross; and
(ii)description of electromagnetic intensity enhancements observed by HAARP when the radar beam is
parallel to the Earth’s ambient magnetic field.




STATUS OF EFFORT

A. This item has been completed and manuscripts have been published [P1,P3], detailing with our results
for the cylindrical, non-periodic, fully relativistic case, and for voltages between 300Kvs and 500K vs.
These papers are a summary of the equations in the relativistic case, and have presented numerical
solutions of the important quantities, in the range of published experiments. There it is also noted two
particular problems to the relativistic case. First, one cannot have cylindrically symmetric solutions
in the DC (background) due to Maxwell’s equations. As pointed out in that paper, as the radial
current increases, there develops an azimuthal DC magnetic field, which has the eventual effect of
creating longitudinal variations in the physical quantities. Thus in order to avoid a “3D problem”,
one must restrict the mathematical treatment to that of a longitudinally “thin” device. Even with
that approximation, there was still a problem with determining consistent periodic solutions. For large
currents, one could expect an rf multi-mode solution, which would then drive the DC background
density away from perfect cylindrical symmetry. To treat this case, it was found that one would have
to work with a background containing periodic variations. As a consequence of this, strictly speaking,
a two-dimension model of a relativistic, electromagnetic, crossed-field device is not valid, unless such
a device is infinitesimally thin. Then for the background to be cylindically symmetric, it would have
to be operating in a low current mode. How thin is "thin” for computational purposes, has not been
addressed.

On Item A.(ii), it was determined that an understanding of the saturation stage would be of more
importance, since our earlier results had indicated that it was the saturation stage which would most

likely determine any “pulse shortening”. We intend to return later to the interpretation of how these
effects affect the operation of a device.

B. Saturation stage of magnetrons

1. Work on the WKB theory of the saturated stage of magnetron operation has been completed. A
manuscript on this theory had been published in the proceedings of the “Frontiers of Nonlinear
Physics” conference [C1]. The following are the major results from that manuscript. We now
understand that there are five basic rf modes in the nonrelativistic magnetron, and not just the two
potential modes, as has been supposed before. The three additional modes have been identified as a
short wavelength drift mode and a short wavelength cyclotron mode (with two degrees of freedom),
whose particle analog are the Slater orbits. Each of these three new modes have fast vertical
oscillations, and will therefore generally propagate independent of the others, except when any two
cross at a resonance. The operation mode of the device seems to require the short wavelength drift
mode to cross the two potential modes in the region of the edge of the sheath. The excitation of the
drift cyclotron mode seems to be responsible for an ultra-low noise operating mode of a magnetron.
In the ultra-low noise operating state of the Varian CFA #7T266, this resonance was deep inside
the sheath and near the cathode.

2. To go beyond a WKB theory of the stationary stage, it is necessary to use something like a matrix
WKB perturbation theory to reduce this fifth-order problem to a system which could be analytically
analyzed and also numerically integrated. However, one must understand that working with fifth-
order matrices is no simple matter, particularly if one is attempting to carry it out algebraically and
analytically. Furthermore, this problem has a multiscale structure similar to that of a boundary
layer problem, except that it is an internal resonance layer instead. Then the fact that the total
system is a fifth-order set of linear ordinary differential equations (ODE), significantly complicated
the solution process, even though at the resonance layer, one could reduce the system to third-
order. There are other complications to this problem which are still not fully understood. Our
first approach was to attempt to use matrix methods combined with & WKB perturbation theory.
In this case, one expands about a set of five eigenvectors, which in the WKB limit, would be the
WKB solution-vectors. Using these eigenvectors as a basis, one expands the general solution as a
sum over the basis vectors, seeking to determine the equations for the amplitudes of these basis
vectors. This approach does work fine as long as one is away from any resonance. However, near any
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resonance, the WKB eigenvectors become generally either degenerate or singular. As a consequence
of this, although the theory of this mathematical approach is sound, the resulting complexities have
resulted in no satisfactory solution for this problem with this approach.

3. Thus matrix methods combined with WKB perturbations were not successful. However, another
approach was taken wherein one would use WKB perturbation theory on each individual equation,
which in this case proved to be a workable approach. Expanding the perturbed physical quantities
in the five rf modes, one could then obtain an analytical solution in the region of the diocotron
resonance. From this analytical solution we were able to obtain the conversion, reflection and
transmission coefficients when any one of these modes passed through the diocotron resonance. This
work has recently been publish in the May issue of Physics of Plasmas [P4]. As an single example
of the consequences of these results, let us assume that there were no fast drift modes between the
cathode and the diocotron resonance. Then it follows that above the diocotron resonance there will
always exist a fast drift mode, which will have been mode-converted out of the slow modes. At the
present moment we do not understand how these fast modes affect the operation of a device. We
do note that their vertical structure oscillates very rapid, so rapid that one should not expect to
see them in PIC code results. We also do not know to what extent the normal turbulence level in
a device would tend to average these modes. (The turbulence level is itself an unknown.) We do
know that this is a new and unstudied phenomena in these devices.

4. Note that in B.3) above, one is only obtaining analytical expressions for the 1f solutions in the region
of the resonance. The real problem will be to numerically solve and couple the rf and dc solutions
self consistently, inside and outside of any resonance region. For this to happen, we will develop
the require numerical techniques for obtaining the WKB solution (in the region of validity) for the
fast modes, and when we are not near a resonance, and independent of the fast modes, numerically
integrate the two slow modes. At any resonance we will require techniques for integrating through
the resonance and matching to the individual modes on the other side. This is work in progress.

C. This action awaits the results of Item B.
D. Ionospheric interactions

1. We have developed a Fortran code to determine the linear solutions of the EM wave in the iono-
sphere, at all heights, for a given electron density profile, and for given frequencies. That code is
still incomplete. The diffienlty in the coding lies in the logic necessary to determine when to change
from the WKB method to the ODE method, and vice versa, for each and all possible combinations
of the 4 modes present. Folded into this has to be the proper sorting of the modes above and below
each resonance and cutoff, which further complicates the problem. Work on this section had to be
suspended in favor of the above magnetron work. :

2. However, the results in the above effort can be transferred over to the problem of the saturation
stage of the magnetron. Although this problem has more modes, being a 5th-order system of ODE’s,
the resonance structure is much simpler than that in the ionospheric problem. In particular, in the
magnetron problem, i)the fast modes never cross, ii) there can never be more than three locations
where the modes cross, and iii) at any crossing, there will always be exactly one fast mode and two
slow modes crossing. We do note that once the code is working for the saturation stage problem,
then we would expect to be able to port sections of this code over to the ionospheric problem.

3. On the precursor problem (an rf wave propagating down through the ionosphere, taking a mode! of
the ionosphere to be a box of fixed density, and the rf wave as a boxed sine wave), Mr. Galen Kaup
has been making good progress. A literature survey brought out the fact that all previous work
on precursors, have been in a frequency regime wherein one had strong variations in the dielectric
constant. On the other hand, this problem is one wherein the operating frequency is so high that
the dielectric constant is weak. However, one also is propagating the beam sufficiently far so that
dispersion does have sufficient time to form a reasonably strong precursor. The current state of the
work is that we have everything done, except for the evaluation of two constants of integration. The
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integrals that define these constants involve multiscales, and therein lies the difficulty in evaluating
them. However, work is progressing and they will soon become evaluated.

ACCOMPLISHMENTS/NEW FINDINGS

1. Our major results on the HPM problem are discussed above under Item B) above. We note here a
comment and a generalization which arise out of those results.

a. A comparison of our model of the A6 with PIC code simulations have found the two results to
be qualitatively similar. In particular there are distinct similarities in the structure of the spokes
found in each case. '

b. Onc of the major difficulties in basic research today is the fact that problems of current interest are
often multiscales problems. Such problems require new methods of attack. Computational methods
applied to multiscale problems too often become limited due to time and memory requirements.
One method of attack we have found useful has been the use of a judicious combination of analytics
and numerics. This is also the major reason why we have had success in modeling cross-field devices.
In this approach, analytics are used to separated the problem into its different scales of length and
time. Then the resulting equations can be successfully number-crunched by using only relatively
low accuracy (and thereby rapid) software routines. Of course, it is also very important that the
scales be separated out by their order of importances. The success of this approach does depend
on correctly identifying the importances of the various scales.

2. We have been extending our understanding of the realm of nonlinear materials and interactions which
could support solitons [P2]. Another nonlinear optical interaction to be found in nonlinear optical
materials is called “Type II second-harmonic generation”. This interaction is a parametric interaction,
whereby two different modes (polarizations) at the same frequency could combine and create another
mode at a higher frequency, the second harmonic. In general such a system will contain dispersion effects
and Kerr-like nonlinearities as well. A model of this interaction has been created and the possible solitons
which could exist in this model have been detailed. An interesting feature of solitons in this system
is that many of the soliton solutions were found to be unstable. Furthermore, the decay mode of the
unstable solitons was almost always a decay into some breather state. In other words, the majority of
the stable nonlinear waves in this system appear to be breathers, not solitons. Thus this system has
some unique properties which could provide unique interaction mechanisms for optical logic devices.
The downside is that at the present moment, no studies of breather interactions, such as colliding
breathers, have ever been done. Thus their potential use is currently unknown. Of the instabilities
observed in this system, we note that a surprisingly different type of instability had occasionally been
observed, which was essentially a chaotic-type of instability. In this instability, as one numerically
integrated forward in time, using the initial conditions of the exact soliton solution plus a small random
perturbation, one would not observe anything happening for a while. It would appear to be a stable
solution. But suddenly one would observe a rapid growth in the shorter wavelengths cumulating with
the soliton suddenly “shattering” into short wavelength fragments and pieces. Overall this is a very
interesting system from the mathematical point of view, with new types of interactions occurring as
well as containing a variety of different soliton and breather solutions.

3. Considering the instabilities observed in 2.) above, we also undertook, and have now completed, a study
with Dr. V. Gerdjikov on how to predict these instabilities theoretically [S2]. The difficulty lies in the
fact that the general system is twelfth-order, so one then needs to work with a twelfth-order linear ODE
system. But this is an eigenvalue problem with a spectra parameter. Thus this is also equivalent to
a twelfth-order inverse scattering problem. Then the stability of the solitons in 2.) above could be
studied by using inverse scattering techniques. Now, inverse scattering problems beyond second-order
are more complicated and are poorly understood in general. Thus we took on to give a full but simple
description of how such higher order scattering (eigenvalue) systems need to be approached and studied,
giving the theory and also discussing the numerical methods needed to locate any instability. One of the
consequences of this is that systems larger than second-order will always have more than one “Evan’s
function”.




4. Consider the Nonlinear Schroinger equation (NLS). The important part of its solutions are the solitons.
Each soliton has four key parameters: amplitude, phase, width and position. On the other hand, the
number of degrees of freedom that any solution of the NLS possesses are many more degrees of freedom
that this: four times a continuum. So if one only needed to describe NLS solitons and their interactions,
then the NLS really has many more degrees of freedom than are needed. Then why should all this
extra baggage be carried around by “soliton theory”? A simple answer is that these other degrees of
freedom can cause a soliton to interact with the environment. Nevertheless, reduction in the number
of degrees of freedom simplifies any problem. One way that this can be done is with a variational
approximation based on the Euler-Lagrange equations. However what has been missing in the past has
been some means to evaluate the validity of such an approximation. Such an evaluation can now be
done quantitatively and is quite simple in concept. This is described in a manuscript that has been
submitted for publication to Phys. Lett. A [S3].

5. Recently we have shown how to modify the well-known Inverse Scattering Transform (IST), in order
to solve a long-standing problem in shallow water waves: the general solution of the Camassa-Holm
equation, under the most general initial conditions. A manuscript on this is to appear in Stud. Appl
Math. [S1].

6. A very important nonlinear optical interaction is degenerate two-photon propagation (DTPP), because
it simply takes two photons from the same beam, and combines them into a single photon, of twice the
original frequency. Thus this can be a very fast interaction, basically since the photons used are from
the same laser beam and are therefore always coherent. And this interaction can generate high intensity
laser beams. Based on the above recent results with the Camassa-Holm equation, we now know how to
solve the full DTPP equations. This work is being carried out in collaboration with Dr. Heinz Steudel,
of Berlin, Germany. Manuscripts are currently being prepared which will describe this work.
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